LOGIKA MATEMATIKA
Assalamualaikum wr.wb
pada kesempatan kali ini saya akan mengevaluasi tentang logika matematika. Tentu kalian sudah tidak asing dengan logika matematika karna pelajaran ini ada pada mata pelajaran matematika.
B.pengertian
Logika matematika
adalah cabang logika dan matematika yang mengandung
kajian matematis logika dan aplikasi kajian ini pada
bidang-bidang lain di luar matematika. Logika matematika
berhubungan erat dengan ilmu komputer dan logika filosofis.
C.maksud dan tujuan
- tujuanya agar kita bisa tau logika matematika dalam pembuatan program
Dalam logika matematika, kita belajar untuk mementukan nilai dari suatu pernyataan, baik bernilai benar atau salah. Pernyataan sendiri terbagi menjadi 2 jenis, yaitu:
- Pernyataan tertutup (kalimat tertutup)
Contoh:
“5 adalah bilangan genap”, kalimat tersebut bernilai salah karena yang benar adalah “5 adalah bilangan ganjil”.
- Pernyataan terbuka (kalimat terbuka)
Contoh logika matematika:
Saat
Saat
Ingkaran atau Negasi dari suatu Pernyataan
Ingkaran atau negasi adalah kebalikan nilai dari suatu pernyataan, dimana ketika suatu pernyataan bernilai benar, maka negasinya bernilai salah dan saat suatu pernyataan bernilai salah, negasinya bernilai benar. Ingkaran atau negasi dari pernyataanPernyataan Kuantor
Pernyataan kuantor adalah bentuk logika matematika berupa pernyataan yang memiliki kuantitas. Dalam pernyataan kuantor, pada umumnya terdapat kata semua, seluruh, setiap, beberapa, ada, dan sebagian.Kata-kata yang senilai dengan seluruh, semua, setiap termasuk dalam kuantor universal dan kata-kata yang senilai dengan sebagian, beberapa, ada termasuk dalam kuantor eksistensial. Kuantor universal dan kuantor eksistensial saling beringkaran.
Pernyataan Majemuk, Bentuk Ekuivalen dan Ingkarannya
Dalam logika matematika, beberapa pernyataan dapat dibentuk menjadi satu pernyataan dengan menggunakan kata penghubung logika seperti dan, atau, maka dan jika dan hanya jika. Pernyataan gabungan tersebut disebut dengan pernyataan majemuk.Dalam logika matematika, kata hubung tersebur masing-masing memiliki lambang dan istilah sendiri.

Tabel Kebenaran Konjungsi

Dari tabel diatas dapat disimpulkan bahwa sifat dari konjungsi adalah bernilai benar jika kedua pernyataan penyusun dari peryataan majemuk keduanya bernilai benar.
Tabel Kebenaran Disjungsi

Dari tabel diatas dapat disimpulkan bahwa sifat dari disjungsi adalah bernilai salah jika kedua pernyataan penyusun dari peryataan majemuk keduanya bernilai salah.
Tabel Kebenaran Implikasi

Pada sifat implikasi ini,
Tabel Kebenaran Biimplikasi

Pada sifat biimplikasi, penyataan majemuk akan bernilai benar jika kedua pernyataan penyusunnya bernilai sama, keduanya benar atau keduanya salah.
Tautologi dan Kontradiksi
Tautologi adalah pernyataan majemuk yang selalu benar untuk semua kemungkinan yang ada dan kontradiksi adalah kebalikannya, yaitu pernyataan majemuk yang bernilai salah untuk semua kemungkinan yang ada.Bentuk Ekuivalen Pernyataan Majemuk
Pernyataan majemuk yang memiliki nilai sama untuk semau kemungkinannya dikatakan ekuivalen. Notasi ekuivalen dalam logika matematika adalah “Bentuk-bentuk pernyataan yang saling ekuivalen adalah:

Ingkaran Pernyataan Majemuk
Ingkaran Konjungsi:Ingkaran Disjungsi:
Ingkaran Implikasi:
Ingkaran Biimplikasi:
Konvers, Invers dan Kontraposisi
Konvers, invers dan kontraposisi adalah bentuk lain dari implikasi, dimana:Konvers dari
Invers dari
Kontraposisi dari
Penarikan Kesimpulan (Logika Matematika)
Penarikan kesimpulan adalah konklusi dari beberapa pernyataan majemuk (premis) yang saling terkait. Dalam penarikan kesimpulan terdiri dari beberapa cara, yaitu:
Contoh Soal Logika Matematika:
Soal 1:Premis 1 : Jika Andi rajin belajar, maka Andi juara kelas
Premis 2 : Andi rajin belajar
Kesimpulan dari kedua premis diatas adalah ….
Jawab:
Premis 1 :
Premis 2 : p
Kesimpulan : q (modus ponens)
Jadi kesimpulannya adalah Andi juara kelas.
Soal 2:
Premis 1 : Jika hari hujan, maka sekolah libur
Premis 2 : sekolah tidak libur
Kesimpulan dari kedua premis diatas adalah ….
Jawab:
Premis 1 :
Premis 2 :
Kesimpulan : (modus tollens)
Jadi kesimpulannya adalah hari tidak hujan.
Soal logika matematika 3:
Premis 1 : Jika Ani nakal, maka Ibu marah
Premis 2 : Jika Ibu marah, maka Ani tidak dapat uang saku
Kesimpulan dari kedua premis diatas adalah …
Jawab:
Premis 1 :
Premis 2 :
Kesimpulan :
E.Penutup
sekian yang dapat saya sampaikan semoga bermanfaat
F.Referensi
https://id.wikipedia.org/wiki/Logika_matematika
http://www.studiobelajar.com/logika-matematika/

0 komentar:
Post a Comment